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A point vortex is introduced into a weak background vorticity gradient at finite
Reynolds number. As the vortex spreads viscously so the background vorticity
becomes wrapped around it, leading to enhanced diffusion of vorticity, but also giving
a feedback on the vortex and causing it to move. This is investigated in the linear ap-
proximation, using a similarity solution for the advection of weak vorticity around the
vortex, at finite and infinite Reynolds number. A logarithmic divergence in the far field
requires the introduction of an outer length scale L and asymptotic matching. In this
way results are obtained for the motion of a vortex in a weak vorticity field modulated
on the large scale L and these are confirmed by means of numerical simulations.

1. Introduction
The effect of a two-dimensional vortex on the distribution of a passive scalar in

the plane is well known. The flow field of the vortex wraps up the passive scalar
to form a spiral structure, leading to the diffusive decay of scalar fluctuations in
the vicinity of the vortex. Several time scales are involved: in particular there is an
enhanced shear–diffusion time scale for the destruction of scalar fluctuations on given
closed streamlines (Moffatt & Kamkar 1983; Rhines & Young 1983; Bajer, Bassom
& Gilbert 2001). The spiral distribution of the passive scalar also has a fractal nature,
with a non-trivial box-counting dimension which can determine spectral power laws
and anomalous diffusion properties (for example, Gilbert 1988; Vassilicos 1995).

When the passive scalar is replaced by weak vorticity new effects can come into
play owing to the coupling of the vorticity to the flow field. Such vorticity might
be present through perturbations to a vortex, for example if a vortex is immersed
in weak ambient strain generated by other vortices, by vortex interactions, or by
a vortex moving in a background of weak, filamented vorticity. These situations
can occur in two-dimensional turbulence (for example Fornberg 1977; McWilliams
1984; Brachet et al. 1988; Dritschel 1989) but also have wider applicability to the
modelling of vortices in general geophysical fluid flows (for example, Rhines &
Young 1982; McCalpin 1987; Smith & Montgomery 1995; Brunet & Montgomery
2002; Montgomery & Brunet 2002).

Weak vorticity, much like a passive scalar, is subject to spiral wind-up and enhanced
diffusion in the dominant axisymmetric flow field of a vortex (Lundgren 1982; Sutyrin
1989; Bernoff & Lingevitch 1994; Bassom & Gilbert 1998). However, vorticity is
coupled into the flow field, and so can interact with the dynamics of the vortex.
Interesting effects arise when it is coupled to a normal mode of the vortex, for such a
mode can be stabilized or destabilized by the presence of weak vorticity in a critical
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layer (Briggs, Daugherty & Levy 1970; Le Dizès 2000; Balmforth, Llewellyn Smith &
Young 2001; Hall, Bassom & Gilbert 2003a, b). The resulting combination of normal
mode and spiral wind-up of vorticity in a critical layer forms a ‘quasi-mode’ that
is responsible for the ‘rebound’ phenomenon of suppression of non-axisymmetric
vorticity fluctuations in perturbed Gaussian vortices, discussed by Bassom & Gilbert
(1998, 1999, 2000) and Macaskill, Bassom & Gilbert (2002). There is an important
analogy between the equations for inviscid planar fluid flow and magnetized electron
plasmas (Briggs et al. 1970) which allows experimental verification of many of these
results at very high Reynolds numbers (Schecter et al. 2000). A related area of study
for fluid and analogous plasma systems is shear flow; see, for example, Balmforth, del
Castillo Negrete & Young (1997).

Another effect of weak vorticity is to cause the vortex to move in the plane. This
can be considered as a coupling to a mode with angular wavenumber n= 1, and this
mode includes infinitesimal translations of the vortex (Smith & Rosenbluth 1990;
Ting & Klein 1991; Lingevitch & Bernoff 1995; Llewellyn Smith 1995). In this paper
we consider flows confined to the plane, and the case where the coherent vortex is
immersed in a weak background gradient of vorticity; an example is that of a point
vortex introduced at the midline of a weak plane Poiseuille shear flow. At one level
the background vorticity field behaves like a passive scalar, being wrapped around
by the coherent vortex and subject to enhanced diffusion processes. However, the
weak background vorticity is coupled back to the flow field, and this feedback can set
the vortex in motion. We will analyse this feedback within the linear approximation,
for finite and infinite Reynolds number. Our work complements recent studies of
Schecter & Dubin (1999, 2001) who consider the same problem, but rather in the
limit of strong background vorticity and an infinite Reynolds number. Our results
are qualitatively in agreement with theirs, but the analytical formulae obtained are
different, pertaining to the opposite limit of a weak background flow.

Closely related to these studies is the problem in geophysical fluid dynamics of
vortex motion on a beta-plane, for example modelling hurricane and cyclone motion.
In the presence of a background gradient of planetary vorticity (modelled by the
beta-effect), the motion generated by a vortex rearranges absolute vorticity, leading
to a dipolar distribution of relative vorticity (a pair of ‘beta gyres’) which then sets
the vortex in motion (for example, Reznik & Dewar 1994; Llewellyn Smith 1997;
Sutyrin & Morel 1997). This mechanism is closely related to the one we study; in
particular Llewellyn Smith (1997) confronts many of the issues we will face, and
we will make frequent reference to this paper (which will be abbreviated to LS97)
and its results, as we proceed. Appendix A gives a detailed comparison between the
two papers. To summarize: the near field of the two problems is the same, but the
far fields are different. In LS97, the far field supports Rossby waves; in our case
instead the background flow is modulated on a large scale. In Schecter & Dubin
(2001) the advection of vorticity by the background flow becomes important in the
far field. These three different physical pictures for the far field yield similar formulae
for the vortex motion. We also note that LS97 works in an inviscid framework, for
an arbitrary initial vortex profile, whereas we include the effects of viscosity with a
diffusing, Gaussian vortex. This enables us to quantify the effects of viscosity on the
vortex motion and on the spatial structure of the vorticity field.

The flow geometry and basic mechanism leading to vortex motion are shown in
figure 1 (see e.g. Cushman-Roisin 1994 for similar figures relating to motion on a
beta-plane). We begin with a weak Poiseuille flow Ub = µx2 ŷ, depicted in figure 1(a).
Here fluid at the origin (in the centre of the picture) is at rest, and there is a
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Figure 1. Basic mechanism for vortex motion. (a) A background vorticity gradient, (b) in
which a vortex is introduced at t = 0. (c) The distorted contours of the gradient give a flow
field (d) which causes the vortex to move.

background vorticity gradient with Ωb = 2µx. At t = 0 we introduce a point vortex
at the origin (figure 1b), which has the effect of wrapping the background vorticity
around it (figure 1c). This gives increased Ωb on the upper, +y-side of the vortex, and
decreased Ωb on the lower, −y-side. This dipolar distribution of vorticity generates
a flow field (figure 1d) which itself tends to set the vortex in motion to the right.
This is the mechanism we study in this paper, in the linear approximation of a weak
background field. Similar motion was found by Schecter & Dubin (2001) for their
case of strong background shear, and they give additional physical arguments based
on conservation laws to show that a vortex is attracted to regions of like-signed
vorticity.

We note at the outset that the distortion of the background will be proportional to t

for short times, giving a feedback of a vortex velocity of order µt , which on integrating
suggests that the vortex displacement will be proportional to µt2. Unfortunately, not
only is this simple argument unable to predict the direction of motion of the vortex,
but it turns out to be only partially correct, as the problem of vortex motion in a
spatially infinite vorticity gradient set out above is actually ill-posed. It is necessary to
introduce a new, long length scale L which cuts off the gradient, and this gives rise to
an additional correction, which is logarithmic in t , to the µt2 behaviour given above.
Physically, the motion of the vortex is not a local problem, but depends on the far
field of the vorticity distribution. This issue of regularizing a logarithmic divergence
is also found in the study LS97 of a vortex on a beta-plane, but in that case it may
be treated by matching to Rossby wave radiation in the far field.



284 K. Bajer, A. P. Bassom and A. D. Gilbert

The remainder of the paper is organized as follows. In § 2 the governing equations
are set out and the problem specified, while § 3 presents some numerical results
illustrating the phenomenon under discussion. We then develop in § § 4–6 a similarity
solution for a vortex in a spatially infinite gradient of vorticity, which builds on work
by Pearson & Abernathy (1984), Moore (1985, hereafter referred to as M85) and
Bajer (1998) for the evolution of a passive scalar gradient in the flow of a diffusing
vortex. However, as alluded to above, there is a problem in fixing the far-field stream
function, with a growing logarithmic term. To handle this, in § 7 we suppose that the
vorticity gradient is modulated on a large scale L and by matching deduce results
for the vortex motion. Section 8 considers the particular case of vortex motion at
infinite Reynolds number, while the concluding § 9 offers detailed comparison between
numerical and analytical results, and some final discussion.

2. Governing equations
The starting point is the equations for two-dimensional planar fluid motion, written

in standard form as

∂tΩ + J (Ω, Ψ ) = ν∇2Ω + Gb, Ω = −∇2Ψ, (2.1)

with corresponding fluid flow U = (∂yΨ, −∂xΨ ). Suppose we begin with a given
background flow, which is a steady fluid motion maintained by some external body
force Gb. In other words we specify (Ωb(r), Ψb(r), Gb(r)) to satisfy (2.1),

J (Ωb, Ψb) = ν∇2Ωb + Gb, Ωb = −∇2Ψb. (2.2)

Now a point vortex of circulation Γ is introduced at time t = 0 and we ask how
both it and the background flow evolve. That is, Ω(r, t) and Ψ (r, t) are sought that
solve (2.1) with the given background Gb(r) and satisfy the initial condition

Ω(r, 0) = Ωb(r) + Ωv(r, 0), Ωv(r, 0) ≡ Γ δ(x)δ(y) (2.3)

and the far-field constraint

Ψ (r, t) = Ψb(r) + (Γ/2π) log r + O(r−1) (r → ∞), (2.4)

with r ≡ |r|. This latter condition is designed to rule out possible flows, for example
a uniform flow, imposed at infinity. If there were no background flow, so that
(Ωb, Ψb, Gb) ≡ 0, the vortex introduced at t =0 simply spreads diffusively as a
Gaussian or Lamb vortex,

Ωv(r, t) =
Γ

4πνt
exp(−r2/4νt) (2.5)

and, given the dimensions [Γ ] = [ν] = L2/T, we may define a Reynolds number R

based on the vortex, R ≡ Γ/2πν.
We now turn to the background flow. We shall concentrate on two; the first is

standard plane Poiseuille flow, with

Ωb(r) = 2µx, Ψb(r) = − 1
3
µx3, Ub(r) = µx2 ŷ, Gb = 0. (2.6)

Given the parameters Γ , ν and µ defined so far, there is no dimensionless measure
of µ, which has the dimensions [µ] = 1/LT. Instead we introduce a length scale
Lvb = (Γ/µ)1/3 at which the flow of a point vortex of strength Γ and the background
(2.6) have a similar magnitude. When the two flows are combined, inside this radius
the flow will be recirculating, dominated by the vortex, and outside it is approximately
unidirectional and dominated by the background.
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The second background flow we consider has a bounded vorticity distribution,
which is convenient both numerically and analytically. It takes the form

Ωb = 2µL sin(x/L), Ψb = 2µL2(L sin(x/L) − x), (2.7a)

Ub = 2µL2[1 − cos(x/L)] ŷ, Gb = νL−2Ωb (2.7b)

and is periodic with period 2πL. On scales x/L � 1 this sinusoidal flow reduces
approximately to the Poiseuille flow (2.6). Notice that a passive particle placed
initially at the origin will remain at rest; not so a vortex, which should move by
the mechanism shown in figure 1. At this juncture it is worth remarking on the
role of the background forcing Gb. This has been introduced in order to state the
problem of vortex motion cleanly for any Reynolds number R and any background
flow. The forcing term plays no role in the subsequent analytical development, and if
the background flow is inviscid and a two-dimensional Euler flow, then in any case
Gb = 0.

The problem of vortex motion in the sinusoidal flow (2.7) is specified by the
dimensionless parameters R and L/Lvb. Our subsequent analytical study will be valid
under the conditions

R ≡ Γ/2πν � O(1), (2.8a)

L � Lvb ≡ (Γ/µ)1/3, (2.8b)

t � L2/Γ. (2.8c)

These three requirements, which will be used frequently in what follows, admit
straightforward interpretation. The first is a statement that the vortex is of moderate
or high Reynolds number, while the second stipulates that on scales of order L about
the vortex the flow is dominated by the vortex itself. In this event it is then legitimate
to linearize the evolution of the background vorticity about a strong vortex; the
contrasting situation when L � Lvb was examined by Schecter & Dubin (2001) for
R = ∞. We remark that Lvb may be identified with a Rhines (1975) scale as discussed
in Appendix A. The final constraint (2.8c) concerns the duration of the validity of
our results. The presence of the vortex (which has angular velocity α � Γ/2πr2 for
large r) means that the background vorticity rotates through angles of order unity in
a time of order L2/Γ . At times later than this the background cannot justifiably be
thought of as being fixed at large distances, since the vortex shreds vorticity even on
a scale L.

3. Numerical simulation of vortex motion
In this section we present some numerical simulations that show the phenomenon

depicted in figure 1, before we become involved in detailed analysis. The vorticity
equation (2.1) is solved numerically in the periodic domain (x, y) ∈ [−π, π]2 with
initial condition (2.3) and the background flow (2.7). Rather than formally non-
dimensionalizing, it is more convenient to prescribe the length L = 1, circulation
Γ = 2π, and vary the parameters µ and ν. Our code uses periodic boundary conditions
whereas in our later analysis we shall study a single vortex in the infinite plane; the
effects of this difference will be revisited in § 9. Finally, note that the flow used has a
steady flux 〈Ub〉 = 2µL2 ŷ in (2.7); this generates a secular term in Ψb which requires
separate handling in the code that steps (2.1) forward in time.

Figure 2 shows a simulation at a resolution 5122, with the parameters ν = 0.001 and
µ = 0.75 for various times between t = 0 and t = 2. The corresponding dimensionless
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Figure 2. The panels illustrate vortex motion for ν =0.001, Γ = 2π, µ= 0.75, L = 1 and
(a) t =0, (b) 0.4, (c) 1.2 and (d) 2.0. Shown is ωcut(x, y, t) defined in (3.2).

parameters are

R = 1000, L/Lvb � 0.5, Γ t/L2 � 4π (3.1)

and so we are effectively in the inviscid limit of large R. The vortex in figure 2 is
strong compared with the background vorticity and so the vorticity field is cut off at
+2µ to make the background visible; plotted is

ωcut(x, y, t) = min(ω(x, y, t), 2µ) (3.2)

on a grey scale from −2µ (black) to +2µ (white). The vortex then appears as a
white disk (of exaggerated size). Rather than attempting to impose the strict form
of (2.3), the initial condition adopted in practice was ω(x, y, 0+) = (Γ/4πr2

0 ) e−r2/4r2
0

with r0 = 0.015; tests showed that the value of r0 chosen made little difference to our
results.

In figure 2 we clearly see the wind-up of the background vorticity about the
vortex (white disk) which is coupled to the resulting vortex motion, in the +x- and
+y-directions, as also seen by Schecter & Dubin (2001). Note that one feature that
develops in the background vorticity distribution is a ‘hole’ around the vortex, where
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Figure 3. Plotted are (a) X(t), (b) Y (t) and (c) Y (X) for the motion of the vortex centre
shown graphically in figure 2. Shown are numerical results (solid) and asymptotic theory (3.3)
for large R (dotted).

the background vorticity has been destroyed through the shear–diffuse mechanism.
The hole appears as a grey annulus (corresponding to ω = 0) about the white disk
of the vortex, and inside the spirally wrapped background. The hole is also a feature
of the analogous passive scalar problem (M85; Bajer 1998), and is important for
studying the inviscid limit in § 8 below. The vorticity hole is characterized by two
scales; the first is its overall radius O(

√
νt), which may be defined as the distance at

which vorticity is carried through angles of order unity by the central vortex. The
second is the radius at which viscosity damps the vorticity to exponentially small
values, which from equation (4.1) of M85 is O(R1/3

√
νt) (see also Bajer 1998). In

this situation of large Reynolds number the vortex is wholly contained within the
hole and can in fact be considered as a point vortex in the given weak background
vorticity field.

We suppose that the centre of the vortex is located at (X(t), Y (t)), which is
determined by following the position of maximum vorticity in the simulations. Figure 3
shows the motion of the vortex; here solid lines denote the measured forms of X(t)
(a), Y (t) (b) and Y (X) (c). The theory we develop below under the assumptions
(2.8a–c) gives the approximate formula

X(t) + iY (t) = −(Γ/4π)µt2
[

1
2
log(Γ t/8πL2) − 5

4
+ 3

2
γ − 1

4

]
, (3.3)

where γ � 0.577216 is Euler’s constant. This result is valid for large R and is
independent of R. The motion depends not only on the local gradient µ, but also
on the scale L of the background vorticity. Figure 3 shows fair agreement between
this approximate solution (dotted) and the numerical results (solid); a more detailed
comparison will be made in § 9 below, after the theory itself has been developed.
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Note that we have taken µ fairly large in our simulation with L/Lvb � 0.5, which is
not very small in view of (2.8b). However, there is an element of compromise involved
in the selection of µ. At smaller values than that used here the theory holds well, but
the motion of the vortex is smaller, which makes it less easily studied numerically and
less striking graphically. On the other hand, at larger µ � 1 the theory begins to break
down, unsurprisingly. At this stage though, the important information conveyed by
figure 2 is that the mechanism sketched in figure 1 is operative, and we now consider
the effect analytically.

4. The linearized problem and translation modes
Given a steady background flow (Ωb, Ψb, Gb), the full nonlinear problem is to solve

the vorticity equation (2.1) with the initial condition (2.3) and far-field behaviour (2.4).
Some means of diagnosing the resulting vortex motion is also necessary. Generally this
all has to be done numerically; however analytical progress is possible on linearizing
(2.1) about the diffusing Gaussian vortex (2.5), setting

Ω(r, t) = Ωv(r, t) + ω(r, t) + · · · , Ψ (r, t) = Ψv(r, t) + ψ(r, t) + · · · (4.1)

and thereby obtaining the linearized vorticity equation,

∂tω + α∂θω + β∂θψ = ν∇2ω + Gb, ω = −∇2ψ. (4.2)

Here the functions α and β characterize the diffusing vortex structure according to

α(r, t) ≡ −r−1∂rΨv =
Γ

2πr2

(
1 − e−r2/4νt

)
, (4.3a)

β(r, t) ≡ r−1∂rΩv = − Γ

8πν2t2
e−r2/4νt . (4.3b)

We then solve (4.2) subject to initial and far-field conditions that follow from (2.3)
and (2.4),

ω(r, t) → Ωb(r) (t → 0+), (4.4a)

ψ(r, t) = Ψb(r) + O(r−1) (r → ∞). (4.4b)

Convergence in (4.4a) is obviously non-uniform at the location r =0 of the initial
point vortex as t → 0+.

Naturally, the linearized system (4.2) is only an approximation and, for the case
of a background Poiseuille flow (2.6), it is valid provided r � Lvb. For the sinusoidal
background flow (2.7) the linearization is valid on scales up to and including r = O(L),
given that (2.8b) holds.

The linear system (4.2) can be broken into harmonics in θ and we may set

ω =
∑

n

ωn(r, t)e
inθ , ψ =

∑
n

ψn(r, t)e
inθ , Gb =

∑
n

Gn(r)e
inθ , (4.5)

with the usual conditions applied to ensure that these fields are real. Then we have
that

∂tωn + inαωn + inβψn = ν
nωn + Gn, ωn = −
nψn, (4.6)

with 
n ≡ ∂2
r + r−1∂r − r−2n2.

To detect the motion of the vortex in the linear approximation we need to
understand solutions of the vorticity equation corresponding to solid-body translation
of the vortex (see LS97). If we consider the unforced (Gb = 0) vorticity equation (2.1),
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it admits the exact solution

Ω = Ωv(x − X(t), y − Y (t), t), (4.7a)

Ψ = Ψv(x − X(t), y − Y (t), t) + Ẋ(t)y − Ẏ (t)x, (4.7b)

which corresponds to a diffusing vortex (2.5) with centre (X(t), Y (t)) carried in a
uniform flow U ∼ (Ẋ(t), Ẏ (t)) imposed at infinity. Expanding for small (X, Y ) yields
an exact solution to the linearized problem (4.2) (with Gb = 0),

ω = −(Xx + Yy)β, ψ = (Xx + Yy)α + Ẋy − Ẏ x (4.8)

and hence we have an exact solution of (4.6) (with G1 = 0) involving the n= 1 mode
only. This form may be expressed compactly as

ω1 = ωtrans ≡ − 1
2
Z∗(t)rβ(r, t), ψ1 = ψtrans ≡ 1

2
Z∗(t)rα(r, t) − 1

2
irŻ∗(t), (4.9)

where the complex function Z(t) ≡ X(t) + iY (t) has been introduced. We remark that
the solution (4.9), which we label as Atrans, is valid for any Z(t) and will be used to
identify motion of the coherent vortex.

5. Similarity solution in a uniform background vorticity gradient
We start by considering the evolution of a vortex in the uniform background

gradient (2.6). Mathematically, we therefore attempt to solve the linearized vorticity
equation (4.2) with the fields matched through conditions (4.4a, b) to the underlying
Poiseuille flow (2.6). We have previously noted that linearization is justified provided
r � Lvb, but we will find that we are unable to impose the far-field condition (4.4b)
directly. However, our calculation will not have been in vain, for we shall discover
that the solution obtained constitutes an inner solution to the problem of vortex
motion in the sinusoidal background profile (2.7).

The Poiseuille flow (2.6) involves just the modes n= 1 (with ω1 = µr , ψ1 = − 1
8
µr3)

and n= 3 (with ω3 = 0, ψ3 = − 1
24

µr3) together with their complex conjugates (see
(4.5)). Also there is no forcing term, so Gn ≡ 0. The n= 3 component corresponds to
an irrotational external flow, and while it will distort the vortex it has no implications
for vortex motion within our linearized problem. We can therefore safely drop the
mode n= 3 henceforth, and can concentrate on the n= 1 component. The problem is
then to solve (4.6) with n= 1, that is

∂tω1 + iαω1 + iβψ1 = ν
1ω1, ω1 = −
1ψ1, (5.1)

subject to the matching conditions (4.4a, b)

ω1(r, t) → µr (t → 0+), (5.2a)

ψ1(r, t) = − 1
8
µr3 + O(r−1) (r → ∞). (5.2b)

We approach this task using a similarity solution. While we have in mind n= 1, this
particular solution is just one of a whole family, valid for any value n. We therefore
retain a general value for n in this paragraph only, and set

ωn = µrnζ (w), ψn = µrnνtχ(w), w = r/
√

νt. (5.3)

Substituting into (4.6) (with Gn ≡ 0) gives the fourth-order system for χ(w), ζ (w)

ζ ′′ + ζ ′
(

2n + 1

w
+

w

2

)
− ζ

inR

w2

(
1 − e−w2/4

)
+ χ

inR

4
e−w2/4 = 0, (5.4a)

−ζ = χ ′′ +
2n + 1

w
χ ′. (5.4b)
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In equation (5.4a) the first two terms represent evolution under the diffusion equation
while the last two involve the angular velocity and coupling to the stream function
respectively. If this coupling were dropped we would recover the passive scalar
problem discussed by Pearson & Abernathy (1984), M85 and Bajer (1998).

With n again set firmly to unity, the matching conditions (5.2a, b) become

ζ (w) → 1 (w → ∞), (5.5a)

χ(w) = − 1
8
w2 + O(w−2) (w → ∞). (5.5b)

The system (5.4a, b) has four linearly independent solutions, which we denote A1–A4.
Frobenius expansions reveal that just two of these solutions, say A1 and A2, are
finite at the origin and they expand in even powers of w. The first solution may be
taken to be simply the translation mode, and, if Z ≡ µνt2 in Atrans (4.9), we obtain
this exact solution, A1,

ζ = 1
8
R e−w2/4, χ = 1

2
Rw−2

(
1 − e−w2/4

)
− i. (5.6)

Notice how the values of ζ and χ at the origin are linked to the flow at infinity.
The second regular solution A2 may be chosen so that χ(0) = 0, which corresponds
to zero flow at the origin, and so no motion of the vortex. It can be expressed as
a Frobenius expansion or computed numerically and, being a key ingredient in our
calculations, we will return to it shortly.

Now we switch to the behaviour for large w, where the system (5.4a, b) reduces to

ζ ′′ + ζ ′ (3w−1 + 1
2
w

)
− ζ iRw−2 � 0, −ζ = χ ′′ + 3w−1χ ′; (5.7)

only terms that are exponentially small have been eliminated. This pair of equations
partially decouples and one straightforward solution of this system is B1,

ζ = 0, χ = 1, (5.8)

corresponding to uniform flow at infinity. A second solution has the large-w
expansions

ζ = 1 − iRw−2 + O(w−4), (5.9a)

χ = − 1
8
w2 + 1

2
iR log w + O(w−2 log w) (5.9b)

and we call this solution B2. Notice that there is no constant term in (5.9b) and this
has been arranged so that this solution is clearly distinguished from B1 in (5.8). The
remaining two solutions are B3, with ζ = 0 and χ = w−2, and B4, for which both
fields decay exponentially rapidly for large w. These latter two solutions will prove
unimportant for us.

The general solution that is regular at the origin can be written schematically in
two alternative ways, either as a sum of linear multiples of the Ai solutions or in
terms of the far-field solutions,

(χ, ζ ) = a1A1 + a2A2 = b1B1 + b2B2 + b3B3 + b4B4. (5.10)

Looking at the far-field expression, we require b2 = 1 from (5.5a) and the values
of b3 and b4 are immaterial. The usual procedure would be to fix b1 from (5.5b),
implying the absence of an imposed flow at infinity. These two constants would then
in principle determine the two unknown degrees of freedom a1 and a2; the former
determines the translation of the vortex and so permits us to identify Z(t) (see (5.6)).
There is however a significant obstacle to this strategy. Once b2 is fixed as unity, there
is no means of selecting b1, b3 and b4 in order to eliminate the growing logarithmic
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term 1
2
iR log w in χ in (5.9b). Such a logarithmic term is disallowed by the matching

condition (5.5b) which, in physical variables, is designed to eliminate an additional
uniform flow at infinity. This would correspond to a term ψ ∝ r , or equivalently
χ ∝ 1.

However, we have generated a term χ ∝ log w (or ψ ∝ rνt log(r/
√

νt)), which
corresponds to a spatially increasing (and time-dependent) flow. The upshot is that
the linearized problem of a vortex in a spatially extended vorticity gradient must
be ill-posed and the long-range motion driven by the vortex, in conjunction with
an unbounded vorticity distribution, necessarily results in a logarithmically divergent
flow. There are two sensible ways to proceed. We could adopt the methodology used
by Schecter & Dubin (2001) and study the fully nonlinear problem but, rather, we
shall assume the background vorticity field is modulated on a large length scale L,
so that the linear approximation remains valid, and this will enable us to handle
the logarithm properly by matched asymptotic expansions. We remark that similar
logarithmic divergences appear in Schecter & Dubin (2001) and in the beta-plane
study LS97; the relationship between the far fields in our study and these is discussed
in Appendix A.

Before we do this, we briefly return to the solution A2. This is determined by
imposing χ(0) = 0, which corresponds to fixing the vortex at the origin. Following the

form of A2 outwards, it will evolve to some combination
∑4

i =1 biBi for large w. It
is convenient to normalize so that b2 = 1, and thereby satisfy the condition (5.5a). We
also let b1 = RF(R), whereupon

A2 = RF(R)B1 + B2 + b3B3 + b4B4, (5.11)

with the function F (R) to be determined asymptotically or numerically; this is the
subject of the next section. Under these conditions A2 has the far-field behaviour

ζ = 1 − iRw−2 + O(w−4), (5.12a)

χ = − 1
8
w2 + 1

2
iR log w + RF(R) + O(w−2 log w) (5.12b)

and, physically, if we wish to fix the vortex at the origin, this is the flow that should
be imposed at infinity. Notice that the most general solution to (5.4) and (5.5a) (but
excluding (5.5b)) is then just a1A1 + A2.

Finally we leave the similarity-variable framework. When rewritten in terms of
ω1(r, t) and ψ1(r, t) using (5.3) our similarity forms provide a solution to the
corresponding problem in (r, t); that is (5.1) and (5.2a). However, a less restrictive
solution can be obtained by replacing a1A1 by a general translation mode in (4.9),
of the form Atrans for any Z(t). This more general solution, which we can write
schematically as Atrans + A2, solves (5.1) and (5.2a) (but not (5.2b)) and has the
far-field behaviour

ω1 = µr − iRµνtr−1 + · · · , (5.13a)

ψ1 = − 1
8
µr3 + Rµνtr

[
1
2
i log(r/

√
νt) + F (R)

]
− 1

2
irŻ∗(t) + · · · . (5.13b)

This is the far-field expansion of our inner problem and the additional flexibility of
having an arbitrary Z(t) will be essential when we come to match to an outer solution
in § 7.

6. Evaluation of F (R)

In this section we calculate the function F (R) in (5.12b) both numerically and
asymptotically. To do this we isolate A2 numerically by solving the system (5.4)
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R F (R) (asymptotic) F (R) (numerical) G(R) (numerical)

5 0.393 − i0.547 0.291 − i0.519 −0.439 − i0.581
10 0.393 − i0.720 0.367 − i0.706 −0.412 − i0.733
20 0.393 − i0.893 0.379 − i0.895 −0.381 − i0.758
40 0.393 − i1.12 0.384 − i1.067 −0.383 − i0.768

Table 1. Asymptotic (6.2) and numerical determinations of F (R). Also given is the function
G(R) defined in (7.14).

subject to the boundary conditions

χ(0) = 0, χ ′(0) = ζ ′(0) = 0, ζ → 1 as w → ∞. (6.1)

This was done using the NAG routine D02GBF on an interval 0 � w � wmax with
wmax as large as 400; the range has to be increased with R because the expansions
for large w proceed in powers of Rw−2. The two-term expansion given in (5.12a)
was used as the boundary condition on ζ at wmax and F (R) then extracted from the
value of χ there; see (5.12b). Checks were made by using other codes to solve (5.4)
subject to (6.1) but the procedure described turned out to be the most reliable for our
purposes.

Results for F (R) are given in table 1. For large R we will shortly establish the
asymptotic approximation

F (R) ∼ 1
8
(π − 2i(log R + γ )), (6.2)

with γ again denoting Euler’s constant. It is seen from the table that the asymptotic
prediction (6.2) agrees very well with the computations for large R, and is even quite
reasonable for moderate values as low as R = 10. In order to derive the large-R result
(6.2) we build on the asymptotic study of M85, who considered the advection and
diffusion of a passive scalar in a spreading Gaussian vortex (see also related work by
Pearson & Abernathy 1984 and Bajer 1998). This problem amounts to solving (5.4a)
(for n= 1) with the stream function coupling term,

1
4
χ iR e−w2/4 (6.3)

deleted, and ζ now plays the role of a passive scalar; the appropriate boundary
conditions are ζ ′(0) = 0 and ζ (∞) = 1. M85 showed that in the formal limit R → ∞
the solution is characterized by ζ � 1 (exponentially small in R) for w � R1/3; in this
region the scalar has been homogenized by the vortex. The actual vortex, of scale
w = O(1), lies well inside this zone.

Now suppose we take this passive scalar solution for vorticity ζ , and reconstruct
the corresponding stream function χ from (5.4b) with the boundary conditions
χ(0) = χ ′(0) = 0 (from (6.1)). This can be written in integral form

2χ(w) =

∫ w

0

(
s3

w2
− s

)
ζ (s) ds, (6.4)

which demonstrates that χ(w) is also exponentially small for w � R1/3. The conclusion
is that the awkward stream function coupling term (6.3) is actually small throughout
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space so that the approximation which treats ζ as a passive scalar is correct, to
exponential accuracy in R � 1.†

Motivated by this observation, we therefore use (6.4) to compute the leading far-
field behaviour for χ using the complete asymptotic solution found in M85. The
relevant part of his solution is simply

ζ (w) ∼ exp(−iR/w2). (6.5)

This is valid for R1/4 � w = O(R1/2), gives the dominant contribution to the integral
(6.4) and agrees with (5.12a). Once w =O(R1/4) an alternative expression for ζ holds
(see M85) but this region makes no contribution to (6.8) to the accuracy given.

Equation (6.5) may be obtained either from equations (2.2), (2.3), (4.1) of M85, or
deduced from (5.4a) using the balance 1

2
wζ ′ ∼ iRw−2ζ . Using results appearing in

chapter 5 of Abramowitz & Stegun (1965), the integral in (6.4) may be expressed as

4χ(w) = w2(E3(z) − E2(z)) = w2
[
− 1

2
(z + 1)e−z + z( 1

2
z + 1)E1(z)

]
, (6.6)

where z ≡ iR/w2 and En(z) denotes the exponential integral

En(z) =

∫ ∞

1

e−zt

tn
dt (t = w2/s2). (6.7)

We are interested in the far field w → ∞ which corresponds to z → 0. Applying the
asymptotic series for E1(z) with z small leads to

χ(w) = − 1
8
w2 + 1

4
iR

(
2 log w − γ − log R − 1

2
iπ

)
, (6.8)

where γ is Euler’s constant. This expression, valid for large R, is of the form of
(5.12b), which holds for any R, and it is then an elementary task to deduce that the
large-R form of F (R) is precisely (6.2).

This result is derived for a uniform gradient, and so forms part of the inner solution,
valid for r � L, of the full problem of vortex motion in a sinusoidal background
vorticity distribution. As a check on the consistency of this, we note that the size of
the hole in the vorticity distribution is w = O(R1/2), which in terms of real variables
is r =O(

√
Rνt) =O(

√
Γ t) � L, from (2.8c). Within the restrictions we placed on our

analysis the hole is always well within the outermost scale L.

7. Matching to the far field and vortex motion
We have developed the solution of a vortex in a uniform vorticity gradient (2.6) as

far as we can. Next, suppose that the background flow is modulated on a length L

and, specifically, consider the sinusoidal flow given by (2.7). In this case our previous
solution yields what is simply an inner solution, valid on scales r � L. (Note that
in the case of Poiseuille flow (2.6) Gb is zero, whereas now, in the full problem with
the sinusoidal flow (2.7) or some other general background flow (2.2), Gb may be
non-zero. It may be checked that Gb is negligible in the inner problem (5.1) with

† It should be noted that since ζ is exponentially small in the annular hole surrounding the
vortex core, the coupling term (6.3) is potentially as important in equation (5.4a) as the other terms.
Thus the expression for ζ in the region 1 � w � R1/3 is different from that given in M85. However
the important outer solution (6.5) is essentially fixed by the far-field boundary condition within (6.1)
and is independent of the detailed structure of ζ within w � R1/3. The upshot is that although the
presence of the stream coupling term has an O(1) relative effect on ζ within the hole, this quantity
remains exponentially small there and does not influence the large-R result (6.8).
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the scalings (2.8a–c) in force.) Our procedure now is to develop a straightforward
expansion for the outer problem, which requires us to describe the evolution of
vorticity on a scale r =O(L). We impose the far-field boundary condition (4.4b) on
this larger scale flow, match to complete the solution and thereby determine the
vortex motion. In general this outer flow can be expected to involve all harmonics n,
but only the n=1 component will be relevant when the matching is performed.

Although our focus will be on r =O(L) there is actually no need to formally rescale
the problem. At a given time t the vortex has a scale of order

√
νt and the ‘hole’

in the background is of size
√

Rνt , or equivalently
√

Γ t . These scales are much less
than L under the restrictions (2.8a) and (2.8c) that were placed on the analysis at the
outset. For r = O(L) the Gaussian vortex appears as a point vortex and background
vorticity evolves as a passive scalar. We can therefore justifiably solve (4.2) with β � 0
and α � Γ/2πr2 = Rνr−2 (both correct to exponential accuracy). It is not necessary
to obtain a solution for general times t and a power series expansion in time is quite
sufficient in view of the restriction (2.8c). In addition, the leading-order correction is
adequate for our needs, so we set

ω(r, t) = Ωb(r, θ) + ω̃(r, θ, t) + O(t2), (7.1a)

ψ(r, t) = Ψb(r, θ) + ψ̃(r, θ, t) + O(t2) (7.1b)

(recall (4.4a)), where

∂t ω̃ + α(r)∂θΩb = ∂t ω̃ + Rνr−2∂θΩb = 0 (7.2)

gives immediately

ω̃ = −Rνtr−2∂θΩb. (7.3)

Note that for the beta-plane problem in LS97, (7.2) is replaced by the equation for
Rossby waves in the far field, as discussed in Appendix A.

For the particular background (2.7) this becomes

ω̃(r, t) = −2LRµνtr−2 ∂θ sin(rL−1 cos θ) (7.4)

and we are only really interested in the n = 1 component. With

ω̃ =
∑

n

ω̃n(r, t) exp(inθ),

results given in chapter 9 of Abramowitz & Stegun (1965) show that

ω̃1(r, t) = −2iLRµνtr−2J1(r/L). (7.5)

This expression is valid for r = O(L); in an overlap region with r � L, it reduces to

ω̃1(r, t) = −iRµνtr−1 + · · · (7.6)

(see (7.8) below). Comparison with (5.13a) reveals that (7.6) is precisely the second
term of the large-w form of the inner similarity solution, as indeed it ought to be.
The first term in (5.13a) corresponds to the background Ωb itself.

However, we really need the n= 1 mode of the stream function, ψ̃1. This may be
written in terms of ω̃1 given in (7.5) by inverting −ω̃1 = 
1ψ̃1,

2ψ̃1(r, t) = −r−1

∫ ∞

r

ρ2ω̃1(ρ, t) dρ + r

∫ ∞

r

ω̃1(ρ, t) dρ + D1r
−1 + E1r, (7.7)
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where D1 and E1 are arbitrary constants. To proceed, we note the standard properties
of Bessel functions,

J1(z) ∼ 1
2
z (z → 0), J1(z) ∼ (2/πz)1/2 cos

(
z − 3

4
π
)

(z → ∞) (7.8)

and consider the limit r → ∞. The two terms involving integrals give rise to
contributions of order r−3/2 to ψ̃1 and so to comply with the far-field condition
(5.2b) we must set E1 = 0. Now, at last, we have been able to impose the proper
far-field behaviour on the outer solution at scale r � L.

We need to ensure that (7.7) matches correctly onto the inner solution and this
requires the behaviour of ψ̃1 for small r/L = z, say. As z → 0 so∫ ∞

z

z−2J1(z) dz = − 1
2
log z + c1 + O(z2), c1 ≡ 1

2
log 2 + 1

4
− 1

2
γ � 0.307966. (7.9)

The substitution of both (7.8) and (7.9) into (7.7) gives the behaviour of ψ̃1 for
small r as

ψ̃1 = −iRµνtr
(
− 1

2
log(r/L) + C1

)
+ D2r

−1, C1 ≡ c1 + 1
4

= 1
2
(log 2 + 1 − γ ), (7.10)

where D2 is another constant that is of no interest here. This approximate form of
the stream function of the outer expansion, valid as we approach the inner region,
should match with the second term in (5.13b). This can be achieved by fixing Ż∗

appropriately, which gives the vortex velocity as

Ż = −Rµνt
[

1
2
log(νt/L2) − 2C1 − 2iF ∗(R)

]
(7.11)

and integration yields its position as

Z = − 1
2
Rµνt2

(
1
2
log(νt/L2) − 2C1 − 2iF ∗(R) − 1

4

)
, (7.12)

taking Z → 0 as t → 0+. It is convenient to rewrite this as

Z = − 1
2
Rµνt2

(
1
2
log(Rνt/4L2) + G(R)

)
, (7.13)

where, from (7.10),

G(R) = − 1
2
log R − 5

4
+ γ − 2iF ∗(R). (7.14)

This theory is correct for any R � O(1); in § 6 we computed F (R) numerically for
moderate values of R and the corresponding values of G(R) are also listed in table 1
above. For R � 1 the asymptotic formula (6.2) gives F (R) and implies that G(R) is
constant at this order of approximation

G(R) � − 5
4

+ 3
2
γ − 1

4
iπ ≈ −0.3842 − i0.7854; (7.15)

so, for large R,

Z = − 1
2
Rµνt2

[
1
2
log(Rνt/4L2) − 5

4
+ 3

2
γ − 1

4
iπ

]
. (7.16)

Finally, replacing Rν = Γ/2π gives the high-R prediction for the movement of a
vortex in a weak background; see equation (3.3). It should be remembered that this
asymptotic form is in reasonable accord with the numerical simulations that were
presented in § 3.

8. Point-vortex motion within an inviscid background
The relatively straightforward formula (3.3) for the motion of a vortex at large

Reynolds number R suggests that the problem may be formulated in a completely



296 K. Bajer, A. P. Bassom and A. D. Gilbert

inviscid setting. Here we sketch the problem of the motion of a point vortex at
(X(t), Y (t)) in a weak inviscid background vorticity distribution, given by (ωb(x, y, t),
ψb(x, y, t)), and show how this reduces to the result (3.3). The exact nonlinear
equations are (Schecter & Dubin 2001)

∂tωb + J (ωb, ψb + ψv) = 0, ωb = −∇2ψb (8.1)

for the background, and

Ẋ(t) = ∂yψb(X(t), Y (t), t), Ẏ (t) = −∂xψb(X(t), Y (t), t) (8.2)

for the point vortex, with

ψv(x, y, t) = −(Γ/4π) log[(x − X(t))2 + (y − Y (t))2]. (8.3)

The appropriate initial conditions are that ωb =Ωb at t = 0, and we must have
ψb =Ψb + O(r−1) for large r; for the remainder of this calculation we concentrate on
the sinusoidal background (2.7).

The solution relating to a weak background flow may be determined by iteration,
and only one step is required. The starting point is to assume that the vortex is
fixed at the origin: this causes the background to wind up and we may compute the
correction that gives rise to vortex motion. Notice that at large, but finite, Reynolds
number the hole in the background vorticity grows as

√
Γ t while the vortex position

is proportional to µt2 plus logarithmic corrections. Thus this is a consistent procedure
for large R as the vortex always remains inside the hole for moderate times; even for
infinite R the procedure makes sense on the basis that the dominant contribution to
the vortex motion from the background arises at distances of order

√
Γ t from the

vortex.
Within this framework the action of the fixed vortex on the background gives

∂tωb + (Γ/2πr2)∂θωb = 0 (8.4)

and if ωb and ψb are broken into Fourier harmonics ωn and ψn, knowledge of ψ1 is
sufficient to compute the leading effect of vortex motion. For the initial background
(2.7) it follows that

ω1(r, t) = 2LµJ1(r/L) exp(−iΓ t/2πr2); (8.5)

we need then to retrieve ψ1 and hence evaluate the vortex velocity defined by

Ż = −2i(∂rψ1)
∗|r=0. (8.6)

In general

2ψ1(r, t) = r−1

∫ r

0

ρ2ω1(ρ, t) dρ + r

∫ ∞

r

ω1(ρ, t) dρ + D1r
−1 + E1r (8.7)

which can be rewritten as

ξ1(s, t) = s−1

∫ s

0

σ 2J1(σ )e−iQ/σ 2

dσ + s

∫ ∞

s

J1(σ )e−iQ/σ 2

dσ + D2s
−1 + E2s, (8.8)

where

ξ1(s, t) ≡ ψ1(r, t)/µL3, s = r/L, Q = Γ t/2πL2 � 1. (8.9)

For Q = 0, i.e. t =0, in (8.8), these equations link

ω1 = 2µLJ1(r/L), ψ1 = 2µL3(J1(r/L) − r/2L) (8.10)
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(corresponding to (2.7)) with

D2 = 0, E2 = −1, (8.11)

whereupon (8.6) shows that Ż = 0, as would be anticipated at t = 0.
It may be verified that the constants D2 and E2 continue to be given by (8.11) for

a general value of t; this ensures the correct far field is ψb =Ψb + O(r−1) for large r .
Given this, we now consider

ξ̃1(s, t) ≡ ξ1(s, t) − ξ1(s, 0)

= s−1

∫ s

0

σ 2J1(σ )
(
e−iQ/σ 2 − 1

)
dσ + s

∫ ∞

s

J1(σ )
(
e−iQ/σ 2 − 1

)
dσ (8.12)

and wish to evaluate

Ż = −2iµL2(∂s ξ̃1)
∗|s=0, (8.13)

from (8.6). Differentiating (8.12) gives

∂s ξ̃1|s=0 =

∫ ∞

0

J1(σ )
(
e−iQ/σ 2 − 1

)
dσ (8.14)

and we require this integral to leading order in Q for small Q; recall that Q is
proportional to t by (8.9). To compute this integral we break up the range by
introducing a parameter Σ with

√
Q � Σ � 1. Throughout 0 � σ � Σ the Bessel

function component may be expanded in powers of σ giving rise to exponential
integrals (6.7), while for Σ � σ the exponential may be written in powers of Q/σ 2,
leading to integrals such as (7.9). We omit the details, which clearly now parallel our
earlier calculations, and result in

∂s ξ̃1|s=0 = 1
2
iQ

(
1
2
log Q + 3

2
γ − log 2 − 1 + 1

4
iπ

)
+ O(Q2). (8.15)

This calculation then recovers Ż as given in (7.11). Note that while this calculation
gives the inviscid result quite quickly, it does not reveal much about the structure of
the vorticity field in the presence of viscosity, for example the hole around the vortex
seen in figure 2.

9. Further numerical comparison and discussion
To close our work we present some further numerical results, and study them in

more detail than figure 3; our aim is to investigate to what extent they support the
theory we have developed. Also we should be wary that the theory involved placing
a point vortex in an incompressible fluid at t = 0, and so involves a logarithmic
divergence in the vortex acceleration as t → 0: it is important to check that our
results are robust to the case of a finite initial vortex as simulated numerically.

We rewrite (7.13) in a simpler form by introducing a rescaled vortex displacement
Z′ = X′ + iY ′ and rescaled time t ′ given by

Z′/Z = Rν/16µL4, t ′/t = Rν/4L2, (9.1)

whereupon

Z′ = X′ + iY ′ = − 1
2
t ′2[ 1

2
log t ′ + G(R)

]
(9.2)

for any R and, in particular, for large R,

Z′ = X′ + iY ′ = − 1
2
t ′2[ 1

2
log t ′ − 5

4
+ 3

2
γ − 1

4
iπ

]
. (9.3)
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Figure 4. Plots of X′/t ′2 (left panels) and Y ′/t ′2 (right panels) against t ′, for (a) L = 1,
µ= 0.75; (b) L = 1

2
, µ= 2; and (c) L = 1

3
, µ= 5. Shown are numerical results (solid) compared

with the asymptotic theory for large R (dotted).

Figure 4 shows a series of runs with X′/t ′2 (left panels) and Y ′/t ′2 (right panels)
plotted. Initially let us concentrate on the top pair of panels which corresponds to
the choices L =1, µ = 0.75, Γ =2π, ν =0.001 and so R = 1000; this run is therefore
practically inviscid and suggests that the formula (9.3) is applicable. The calculation
was performed using a resolution of 10242 and an initial vortex radius of r0 = 0.005.
There are clearly some discrepancies between the numerical (solid) and asymptotic
(dotted) findings. Most noticeably the form of X′/t ′2 shows a fixed displacement
between the two curves, suggesting that there is possibly a problem with the constants
appearing in (9.3). In contrast, the curve for Y ′/t ′2 tends to the correct level for small
times, but then drifts away, presumably because higher-order (longer time) effects
that were ignored in our analysis begin to come into play. Both curves exhibit initial
‘glitches’, whose importance is exaggerated by our dividing X′ and Y ′ by t ′2. These
glitches may be traced to the numerical compromises of the initial vortex being of
finite, rather than zero, radius, and the fact that a finite grid is used. Indeed, close
examination shows that there are also other very minor glitches in the curves in
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Figure 5. Plotted are (a) the real and (b) imaginary components of G(R) as functions of the
Reynolds number R.

figure 4; these arise due to the change of interpolation used to locate the vortex
maximum as it crosses grid points in the simulation.

The issue of the constant displacement in X′/t ′2, corresponding to a query over
our calculation of the X-motion, appears to be a consequence of our use of periodic
boundary conditions. Our analytical study was developed for a single vortex within
an infinite sinusoidal background vorticity distribution, whereas numerically we have
taken periodic boundary conditions. At face value this might not seem too crucial
but our workings have revealed that this difference might be important. We have seen
(as in LS97) that the far field of the vorticity distribution plays an important role in
fixing the logarithmic divergence and so determining the constants in (9.3). The far
fields in the periodic numerical domain and the analytical, isolated vortex calculation
are different!

To check this hypothesis we performed further simulations in the periodic geometry
[−π, π]2 but now with L = 1

2
and L = 1

3
; the outcomes are shown in figure 4(b, c). In

each case there is still just the single vortex in a periodicity box, but in the three cases
illustrated in figure 4 we have one per 1, 2 and 3 wavelengths of the background
respectively. Values for the vorticity gradient were taken to be µ = 2 and 5 for the
latter two cases. It is clear that the agreement with the theoretical results improves
markedly as the numerical configuration approaches the analytical one of a single
vortex in a sinusoidal background. This is especially the case for X′/t ′2; for Y ′/t ′2

the agreement is less good, but still satisfactory. We conclude that our conjecture
is correct and that the discrepancy between the theory and the computations has
its origins in the difference between the analytical and numerical configurations.
When this is accounted for, the numerical evidence gives good confirmation of our
theory.

We have also undertaken a number of runs at lower Reynolds numbers down to
R = 10 (not shown). Surprisingly, the results seem to be almost independent of R in
this range, a result which may be attributed to the form of G(R); see (7.14). This
function, which captures the Reynolds number dependence of the motion, is constant
within our approximations, and numerically varies rather slowly with R in this range,
as may be seen from table 1, or graphically in figure 5. Above R � 10, the effects of
a finite Reynolds number are too small for us to distinguish within the limitations
of our numerical simulations (in particular with our finite initial vortex size and the
use of a periodic rather than infinite geometry). At Reynolds numbers much below
about R = 10 the initial vortex diffuses outwards too quickly for us numerically to
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obtain a good scale separation between the initial vortex extent and the scale of the
background vorticity gradient.

These numerical results conclude our paper, in which we have studied the motion of
a vortex in weak background vorticity. Our analytical approach has been founded on
linearization about a strong vortex; this precludes the background vorticity having its
own dynamical evolution (for example supporting waves that might travel away from
the vicinity of the vortex). The findings highlight the role of logarithmic divergences,
through which the vortex motion depends on the far field of the vorticity distribution.
This was also evident numerically, in comparing the periodic geometry used for
computational convenience, with the infinite geometry adopted for the analytical
calculation. In fact we may now revisit the limit of a spatially infinite vorticity
gradient by considering equation (7.16) and taking the limit L → ∞. At any fixed
time t > 0, the distance X travelled in the x-direction increases as L → ∞; the average
velocity of the vortex over any finite time interval increases as a result of summing
contributions to the velocity from vorticity at increasing distances. This leads to the
ill-posedness of the linearized problem in an infinite uniform vorticity gradient, as seen
in the related beta-plane problem (LS97). Another striking feature is how insensitive
our results are to Reynolds number above about R = 10.

Extensions of the present work to more general background flows would be of
interest, and in Appendix B we give results relating to a more general unidirectional
shear flow than the pure sinusoidal example considered here. As mentioned at
the end of the introduction the problem of vortex motion on a beta-plane is a
fundamental one in geophysical fluid dynamics. An interesting adaptation of our
present study would be to include a beta-effect and so determine the interaction
of motion induced by the variation of Coriolis parameter with latitude, and that
driven by vorticity wind-up as studied here. Such an investigation may be relevant to
understanding motion of geophysical vortices in the presence of jets or other shear
flows.
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would like to thank staff of the Institute of Geophysics of Warsaw University for
their hospitality, and likewise K. B. the staff of the School of Mathematical Sciences
of the University of Exeter. K. B. acknowledges further support from the KBN under
grant number 2 P03B 13517.

Appendix A. The beta-effect and relation with LS97
In this appendix we sketch the relationship of our study with that of LS97, which

should be studied for additional background and references. First let us incorporate
the beta effect in our analysis, which we suppose has constant magnitude β̄ , giving in
place of (2.1)

∂tΩ + J (Ω, Ψ ) − β̄∂xΨ = 0, Ω = −∇2Ψ. (A 1)

We have also dropped the viscous and forcing terms. Our study has focused on the
situation where the initial condition incorporates a vortex in a background shear flow
(2.6) or (2.7). The comparison with LS97 is clearest if we subtract off this background
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flow at the outset. Let us focus on (2.6) in the first instance and set

Ω = 2µy + Ω ′, Ψ = − 1
3
µy3 + Ψ ′; (A 2)

here a prime is just a label and we have rotated the background flow through π/2.
We will take µ and β̄ to be of similar size and with no length scale L yet introduced

our discussion will be valid for

Γ t � L2
vb, Lvb ≡ (Γ/µ)1/3, (A 3)

from (2.8b, c). Note that in the beta-plane context, Lvb can be seen as a Rhines (1975)
scale, where the phase velocity of Rossby waves (of order β̄L2

vb) is similar to that of
the fluid flow (of order Γ/Lvb). Equation (A 1) becomes

∂tΩ
′ + J (Ω ′, Ψ ′) − (2µ + β̄)∂xΨ

′ − µy2∂xΩ
′ = 0 (A 4)

(with Ω ′ = −∇2Ψ ′), and we see that in the third term the background flow for
µ �= 0 enters in precisely the same way as the beta-effect term. However, there is an
additional, fourth term for µ �= 0, which represents the advection of vorticity by the
background flow.

Now consider solving this inviscid problem with the initial condition of a point
vortex at the origin (though LS97 discusses a more general initial axisymmetric
vortex). In the inner problem with r � Lvb, the leading-order balance is trivially
satisfied between the first two terms of (A 4) for a point vortex Ω ′ = Ωv = Γ δ(x)δ(y)
and Ψ ′ = Ψv = −(Γ/2π) log r . At order µ (or β̄) the third term generates a correction
and we obtain

Ω ′ = Ωv +
(
µ + 1

2
β̄
)
ir

(
1 − e−iα(r)t

)
eiθ + c.c. + · · · , (A 5a)

Ψ ′ = Ψv − 1
4

(
µ + 1

2
β̄
)
ir3

(
E3(z) − E2(z) + 1

2

)
eiθ + A1re

iθ + c.c. + · · · , (A 5b)

with α = Γ/2πr2 and z = iΓ t/2πr2. Thus the inner problems are identical in LS97 and
in this paper (except that we include viscosity).

Note that when these expansions are substituted into (A 4) the first three terms are
all of size µΓ/r . It may be checked that for r � Lvb, in this solution the fourth term
in (A 4) remains subdominant in the solution as found so far, being of size µ2Γ t . The
ratio of the fourth term divided by the first is µrt ∼ (Γ t/L2

vb)(r/Lvb) � 1.
Now the far field of the inner problem is given by Γ t � r2 � L2

vb, with

Ω ′ = Ωv −
(
µ + 1

2
β̄
)
(Γ t/2πr)eiθ + c.c. + · · · , (A 6a)

Ψ ′ = Ψv −
(
µ + 1

2
β̄
)
(Γ tr/8π)[log(Γ t/2πr2) + γ + iπ/2]eiθ + A1re

iθ + c.c. + · · · .
(A 6b)

Using this it is readily checked that the second, Jacobian term in (A 4) becomes
subdominant. In fact while the first and third terms remain of order µΓ/r , the
second one falls to µΓ 2t/r3 and so drops out as we enter the far field r2 � Γ t .

Now to obtain the LS97 framework we just set µ = 0 above, and we are left
with simply the first and third terms in (A 4). This describes Rossby wave radiation
and LS97 derives Green’s functions for this, with the appropriate causal properties
(radiation propagating outwards), and then matches to fix A1. The natural scale of
this radiation process is given by β̄rt = O(1).

For our situation we set β̄ = 0, in which case we again have the first and third terms
in (A 4), but the fourth term may also become important. In the far field of the inner
solution, the first and third terms remain of order µΓ/r , while the fourth is again of
order µ2Γ t . The first, third and fourth become comparable at a scale µrt =O(1). If
all these terms are retained, we are studying the motion of a vortex in a shear flow
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that becomes strong at large distances, as done by Schecter & Dubin (2001). In this
case the fourth term, advection of vorticity by the background, becomes comparable
to the third at a scale r = O(L3

vb/Γ t) as might be expected, and one would need to
match to the behaviour at this scale.

We have however not followed this route, but have instead modulated the
background shear on a large length scale L. This leads to replacing (2.6) by (2.7) and
so (A 4) by

∂tΩ
′ + J (Ω ′, Ψ ′) − (2µ cos(y/L) + β̄)∂xΨ

′ − 2µL2(1 − cos(y/L))∂xΩ
′ =0. (A 7)

We now take the inequalities (2.8b, c) to hold. Here the third term remains of its
previous magnitude, but while the fourth term remains of size µ2Γ t for r � L, it
decays as µ2Γ tL2/r2 for r � L. So now the fourth term is small in comparison with
the first in all of space, the ratio being (Γ t/L2

vb)(L/Lvb)(L/r) � 1 for r � L.
This confirms our analysis, in which the fourth, vorticity advection term did not

play a role in the regularization of our logarithmic divergence at scale L. It also
indicates that the problem of vortex motion in the presence of a beta effect as well as
a shear flow modulated on a scale L is sensibly addressed within the framework of
LS97 and this paper, with β̄ and µ of similar magnitude and inequalities (2.8) holding.
In this case it would be necessary to develop LS97 by using the Green’s function for
Rossby wave radiation. In Laplace-transform space, deleting the subdominant fourth
and second terms, this would amount to solving (using obvious notation)

pΩ̄ ′ − (2µ cos(y/L) + β̄)∂xΨ̄
′ = 0. (A 8)

The tractability of this approach and the scope for obtaining geophysically informative
results, remain subjects for further investigation.

Appendix B. Vortex motion in a general unidirectional shear flow
Consider the vorticity distribution and fluid flow

Ωb =

∞∑
n=1

Ωn sin(nx/L), Ub =

∞∑
n=0

Un cos(nx/L) ŷ, (B 1)

with Ωn = −nUn/L and U0 fixed so that the fluid particle at the origin is at rest. The
vorticity gradient at the origin is then given by

2µ =

∞∑
n=1

nΩn/L. (B 2)

There is no need for cosine terms in Ωb or sine terms in Ub; by symmetry these cannot
give rise to vortex motion. We also assume that the terms Ωn decrease rapidly with
increasing n in order to maintain a clear scale separation between the background
vorticity distribution and the vortex itself.

The inner solution proceeds exactly as before with this value of µ up to equations
(5.13). For the outer solution we follow § 7 to obtain in place of (7.5),

ω̃1(r, t) = −iRνtr−2

∞∑
n=1

ΩnJ1(nr/L), (B 3)

and expression (7.7) for the stream function gives

ψ̃1 = −iRνtr

∞∑
n=1

1
2
nΩnL

−1
(
− 1

2
log(nr/L) + C1

)
+ D2r

−1, (B 4)
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analogous to (7.10). This may be rewritten as

ψ̃1 = −iRµνtr
(
− 1

2
log(r/L∗

)
+ C1) + D2r

−1, (B 5)

where L∗ is given by a weighted geometric mean,

L∗ =

∞∏
n=1

(L/n)wn, wn ≡ nΩn/2µL. (B 6)

The calculation then proceeds to yield equations for Ż and Z that are identical to
those in § § 6–8, save that the scale L needs to be replaced by L∗.
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